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SECTION I
INTRODUCTION AND SUMMARY

Computation of high-resolution wavenumber spectra includes,
as an intermediate step, the solution of a set of Hermitian equations. This
set of equat’ 'ns has the form of a least-squares multichannel frequency-

domain filter design equation which can be expressed in vector-matrix

notation as

Ha = b (1-1)

where
= n X nnonsingular Hermitian power spectral matrix

n x 1 known complex column vector of output power spectra

Pl ool
n

n x 1unknown complex column vector of filter weights

This report investigates three techniques of solving for the unknown vector

a: the method of conjugate gradients, steepest-descent method, and exact-
inverse method. The object is to determine the accuracy and computational

complexity of each technique.

Previously, problems of this type were solved using a direct

numerical matrix technique such as the Gaussian elimination method or the

X

square-root method.

%
Fox, L., 1965: An Introduction to Numerical Linear Algebra,
Oxford University Press, Nrw York, p. 205-213,
b33
Faddeeva, V.N., 1959; Computational Methods of Linear Algebra,
Dover Publications, Inc., New York.
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only that the matrix be nonsingular, while the square-roots method requires

To obtain a solution, the Gaussian elimination method requires

the matrix to be nonsingular and Hermitian. It was apparent that neither a
knowledge of the form of the H matrix nor an estimate of the solution vector 3
would significantly simplify the computation involved with either of these tech-
niques. Since both the general form of the H matrix and an estimate of the
solution vector were available, an investigation of two iterative techniques
(steepest-descent and conjugate-gradients) which appeared to benefit compu-
tationally from this knowledge was initiated. Found during this investigation
was a theorem from linear algebra which analytically expresses the inverse
of the particular H matrix used to generate high-resolution f-k filter sets.
Application of this analytical inverse greatly reduced the computation needed

to generate high-resolution f-K filter sets.

The high-resolution wavenumber filter sets are designed

using a power spectral matrix H of the form

’ i
, H=[€I+xx] (1-2)
where
I = n x nidentity matrix
x = nx ] column vector of the channel transforms
—%

x = nx 1l row vector of the conjugate channel transforms

Using the exact inverse equation, the filter vector a can be computed easily as

s
a = % W = —_—(x b) x (1-3)
(5 + I*E)
1-2 science services division
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This computation requires much fewer calculations than a single cycle of the
iterative techniques studied and is orders of magnitude simpler than the

Gaussian elimination te chnique.

Further application of the exact inverse equation arises when
a power spectral matrix is generated using an exponentially weighted series

of transform vectors:

—- —%
X, X, O0<qg <l (1-4)
J )

N-j

H = a

N
j=1

The inverse of H can be generated iteratively by writing

- _x
Hep =0 Hitx %41 (1-5)

The exact inverse equation is

-1 -1 1 -1~ — % -1
H, =L H, =~ - H x .x H (1-6)
j*+l a Jj a:’;* H-l; j Jtl T+l j
jtl 7 j+1

This formulation for the inverse of a power spectral matrix is especially
useful when the iransform vectors ;j are available sequentially as they would
be in a practical situation. The inverse of the power spectral matrix can be
updated as each transform vector becomes available; and from this'inverse
matrix, many frequency-domain filter sets can be designed at each iteration.
The ability to track a spectral matrix adaptively facilitates the cohe rent fre-

quency-domair Processing of small arrays with nonstationary noise fields.

I-3/4 science services division
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MULTICHANNEL FREQUENCY FILTER DESIGN

SECTION II

This .eport investigates three iterative techniques which offer

computational savings in the design of multichannel frequency-domain filter

sets.

This study was initiated to reduce the computational complexity involved

in generating high-resolution f-k spect.-a, thereby enhancing the technique's

capability of a real-time detection and location.

The following discussion

briefly considers the general multichannel frequency-domain design problem

then proceeds to the special problem of high-resolution f-k filter design.

in vector-matrix notation as

%*

where x, xj is the estimated crosspower (for i # j) or the estimated autopower
th

(for i = j) between the i

power estimate between the desired signal output and the j

These autopower and crosspower spectra usually are estimated from a sample

The general ‘muliichannel filter-design equation can be written

1 71
3
xn x1

of multichannel data using one of two general approaches.

ol

h %
and the jt channels and where x, S is the cross-

data channel.

(2-1)

II-1
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One method is generating the autocorrelations and crosscor-

relations from the time-domain data seginent and transforming these cor-

relations to obtain the desired power spectra.

The other

method involves

transforming segments of the data sample and stacking and/or smoothing these

tranriorms to obtain the desired power spectra.

The second method is perti-

nent to this report as it is computationally more efficient than the first method.

The transform operation itself is not discussed, but the data

vector

|

14

anL_

(2-2)

is assumed to be the colateral discrete transforms of all the data channels of

the Lth data segment at a particular frequency. The power spectral matrix

at this frequency then can be estimated as the weighted sum of a priori signal

—_—%
power spectral information S and the transform crossproducts x x so that

% %
X, %X C X, X,
= - — %
=H=£S+Eaxx (2-3)
L7471
1=1
% %
X X . p.9 X
| n 71 n n |
1I-2 science services divisicn
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Using this estimate for the power spectral matrix, the filter design equation

can be written as
m
- —x] - -
[gs +Z %y Xy XL] a = b (2-4)
{1=1

Most iterative solution techniques compute a residual vector

T from an initial guess ;O of the solution vector a:

T = b -Hv (2-5)

In general, the computation of this residual vector requires n complex
multiply and add operations, not including the computations needed to form
the matrix H. In the special case, using Equation 2-3 to form the matrix H,
the résidual vector can be computed directly without explicitly forming the
H matrix. This is done by substituting Equation 2-3 into Equation 2-5 and

using a different order of computation, as shown in the tollowing equation.

"
I

m

—_ — % - =

= §Sv0+z @, x, (x{; v0>-b
=1

To form the H matrix using Equation 2-3, mn‘2 complex multi-
ply and add operations are required. Equation 2-6 can compule the residual

2
using n + 3mn complex multiply and add operations by first forming the

vector dot product ;L Vo then performing the scalar multiplication, and

: . . 2
summing over the resulting vectors. This compares to (m + 1)n” complex

multiply and add operations needed to form H separately and then compute r.

2 II-3 science services division

5 .
[gs +Z a,x, x;] o - b (2-6)
4=1

SR




& s'

Further >mputational savings can be obtained if the signal-
3 2 .
model matrix S, which contributes the n” term, can be expressed as a diago-

nal matrix (uncorrelated noise)

s = | ' (2-7)

3

ot

or the sum of vector products (several plane waves)

#- 3
L

P -_— -3¢
S = Z 1 Ze P (2-8) ,
k=1 J
For diagonal matrix S, (3m + 1)n complex multiply and add operations are :E?

required to compute r. IfS were defined by Equation 2-8, 3(m + p)n
multiply and add operations would be needed. Since using the Gaussian

. 3 .
elimination method to solve Equation 2-1 requires at least 2n~ operations,

significant savings in computation will result from using iterative solution I
techniques, provided only a few iterations are required.

The special problem of designing high-resolution f-k filter

sets uses a simple form of the power spectral matrix where

H = [gu??“] (2-9)

science services division
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This form results from the transient nature of the detected signals, but

these likely will not be present in several different transform segments

of the data sample. The signal model is assumed to be equalized and

uncorrelated from channel to channel; therefore, S = | (the identity matrix),

and

M1
0

o'l
1)

(2-10)

A theorem from linear algebra, which will be called the
exact inverse equation (Appendix B), reduces the computation of high-
resoluticn f-k filter sets to approximately 3n complex multiply and add
operations (where n is the number of channels). The exact inverse

equation can be expressed generally as

| L oatlooE -l
P-+uv] = A - T (2-11)

where
A = nxnnonsingular complex matrix

nx 1l column vector

e |
u

= nx 1l column vector

3k —
= conjugate transpose of v

<

<|

-
[A tuv ]is nonsingular

II-5 science services division



Applying this theorem to the high-resolution f-k filter

design yields

Pointing out the simplicity of the calculations, this vector-matrix equation

can be rewritten as

_ %
B U PR
a, = E - 5 =
L E+x x

—% —
The vector product x x is real and needs to be computed

only once for each transform segment. Remaining calculations can be
accomplished with the equivalent of 2n more complex multiply and adds
(CMPA's). The required computations are discussed in Section V. The

total computation necessary for the exact inverse method is roughly 3n
complex multiply and add operations compared with approximately 12n CMPA's
for one iteration of the steepest-descent method and 24n CMPA's for one
iteration of the finite procedure. Thus, the exact inverse technique is the
most straightforward and efficient procedure to design high-resolution

f--lz filter sets. It is possible to manipulate the exact inverse equation to
update the inverse of a power spectral matrix; this area is covered in the

section on adaptive update methods.

II-6 - sclence services division
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SECTION III
SUMMARY OF GRADIENT METHODS

<P
)

Based on the gradient of a particular quadratic form, two
iterative design procedures — steepest-descent and conjugate-gradient
methods — were investigated during this study. While these two approaches
] are not the most efficient means of obtaining high-resolution f-k filter sets,
they are applicable to the more general filter-desién problems. The details

of these methods are described in Appendix A.

A. STEEPEST-DESCENT METHOD

The numerical algorithm generated using the steepest-

| descent approach is

i e

= v T 3-1
Vedl T Ve TP Ty : (3-1)
= = b - e 3-2
r b Hvk (3-2)

—% —

r r
D, il (3-3)
N

T ™ Tk

A simpler procedure results when the form of the H matrix
is
— -

H=€I+E w, x, x, (3-4)

The matrix operations become vector operations, and the algorithm is

Vel T Vi PP Ty (3=1)

T =T-&3 - % “*‘) (3-5)
Tk © b'ivk'Z “’L"L("L Yk }
£=1

III-1 science services division
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T K%
k k
P, = (3-6)
—% — I %
€1‘krk+2 w, z, z,
1=1
—_— -
Zye T X Ty (3-7)

While the notation of Equations 3-5, 3-6, and 3-7 is more
complicated than that of Equations 3-2 and 3-3, the amount of computation.
needed has been reduced. The reduction in computation is obtained by per-

— —

-_— -
forming the vector-dot-product operations X, Vi and X, T, first, leaving

only scalar operations to be performed. An analysis of the amount of com-

putation required is presented in a later section of this report.
B. FINITE PROCEDURE (CONJUGATE-GRADIENT METHOD)

The computation cycle evolving this procedure is

Vel ™ Ve T By Yy (3-1)
T, = b - Hvk (3-2)
—_ —
"k Tk
P ST = (3-3)
Tk Tk
—_
. "
WG-1 =% = (3-8)
Tr-1Tk-1
e T T V%1 Wi (3-9)

The first cycle is computed using v_vo =T,

III-2 sclence services division
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Again, consider the special case where

it A e o i

m
— —%
= -4
H=gL+ 3 w, %, %, (3-4)
L=1 j
The computational cycle becomes
Vien Vg TR W (3-1)
= . — 20’ = —_ —
e =b-Ev - u x ("L Vk) (3-5)
£=1
—% —
uk = rk. rk (3-10)
—_ —
ik T %1 Tk (3-7)
= *
P = U (5 u + Z W 2y sz> (3-11)
£=1
Y., = uk/uk‘_1 (3-12)
w, = r w (3-9)

o T t Y § T

For the first iteration, Wo = ?0 and 9, is not computed.
Notation again becomes more cumbersome, but the computation
needed is much less than that required to form the autopower-crosspower
matrix and then solve for the desired filter set. Computational savings are
obtained by carrying out the same computations in a different order. A
detailed analysis of the numerical operations involved is presented in a later

section of this report. 1
1

II1-3/4 science services division
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SECTION IV
ADAPTIVE UPDATE METHODS

In many practical applications, all individual vectors xj
which make up the estimated covariance matrix H are not simultaneously
available. The various samples must be stored before they can be used
in the filter design. One method stores all the needed vectors in a com-
puter memory and uses one previously mentioned algorithm to compute
a new filter set each time a new vector is received. Another method
iteratively updates either the filter set or the covariance-matrix inverse
each time'a new vector is received. Iterative updating reduces the storage
and computation required but is restricted to using a class of memory
functions. This class includes the exponential-weighting function which is

discussed in this section.

Two of the techniques previously discussed can be formulated
as iterative-updating techniques which weight previous transform vectors
with an exponentially decreasing function. Exponential weighting can be
obtained by computing a weighted sum of the previous covariance estimate

and the current transform-vector product; i.e.,

—_ =3
= 1 -
Hn [G.Hn_1+xnxn] 0<qa < (4-1)
The n+ 1 estimate will be
H 5 sk &
n+l & n xn+1 xn+1 (4-2)

= H .+x —*] +x . x

= a [a n-1 xn xn xn+1 xn+1

- 2 o + e s — -

= n-1 & xn xn xn+1 xn+1

IV-1 science services division
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etc. Thus, a vector n samples in the past is weighted by a”. If0<ac< 1,

the current estimate of the autopower-crosspower matrix weights the

current transform vector with weights equal to unity and previous transform
vectors with weights of less than unity. These weights (Equation 4-2) become
exponentially smaller for the more distant samples. The past transform
vectors can be weighted in the desired fashion by the choice of o, where

a = exp(-B) for 8 > 0.

A. EXACT INVERSE MATRIX UPDATE METHOD

One updating method applies the exact inverse equation directly

to Equation4-1. The inverse of the updated covariance matrix is then

-] = =%
H x x H
-1 1 -1 -1 -1
H = Ly ) n n n n (4-3)
n a n-1 —-%__-1
a+x H X
n n-l n

The desired filter weights can be obtained from the matrix multiplication

= i -
f=H b (4-4)
n
In this case, the previously computed covariance matrix is considered to
be the noise model. This method requires computing and storage of an
entire matrix at each iteration as well as a matrix-vector multiplication for

each filter set needed. When only a few filter sets are needed, the steepest-

descent technique is computationally more efficient.
B. STEEPEST-DESCENT METHOD

A particularly simple scheme is afforded by extending the
steepest-descent method. The new filter set is formed from the previous

filter set by computing

IV-2 science services division




=y &=

= 4-5
n+1 fn * pn+l Tntl ( )
where the residual vector r is
n+l
T = b - f 4-6
Tatl Hn+l n ( )
The matrix
H =oH +x . % (4-7)
ntl = % Tn T 04l *ntl
This allows the residual vector to be expressed as
s = b-fen +x %] F (4-8)
Tatl = ) [0' n ' *ntl *n+l n
l-a)B+alb-u T ]-% %0 7T
= (1-a) v % “"ntnd T *n+l *n#l 'n
The quantity b - Hn ?n is the residual vector ;n from the previous
iteration. The new residual vector is then
B (l-a)bt+ar -x .x . T (4-9)
r = - - =
n+l & . n ~ *nt+l *n+l “n
This new residual vector, used to calculate the new filter weights, is
stored to be used in the next residual calculation.
IV-3 science services division




The problem of computing the iteration factor P41 is en-
countered now. Since the matrix H exists implicitly at each iteration but
is not directly available for computation, the iteration factor cannot be
computed directly from

—_% -
"nH Tntl

p -
ntl — % -
rn+1 Hn+ 1l rn+1

An alternative to computing the iteration factor for each cycle is to choose
a single value and use it throughout the process. This single value must be
small enough to guarantee the numerical stability of the process. This

requirement wiil be satisfied if

0<pc<
|K

max |

where )\max is the largest eigenvalue of the matrix Hn. Since the matrix

H 1is changing continually as new data samples are added, only the upper
n

bound on the maximum eigenvalue can be expressed. A matrix of the form

of Equation4 -1 is essentially a weighted sum of vector products

= i % ot <a<1
Hn = Z o xn-j xn-j for 0 < q

@®
j=0

The largest eigenvalue e of H is then
max n

— —
A < | x X
max max max

IV-4 science services division
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where X ax is the largest data vector encountered. This implies that the

choice of p should be in the range

0<pcxs P

X X
max max

Such a conservative choice of the iteration factor sacrifices
rapid convergence for numerical stability. This approach requires a priori
knowledge of the maximum magnitude of the transform vector. In a practical

. . L] _*
situation, overestimating the value of x x would be necessary to
max  max

maintain p within the desired bounds.
- —
Another approachtodetermining pis to computex x ateach cycle
= —
and compare it with the largest previous valueof x x. Thenp canbe chosen within
the bounds determined by the previous datausedin the process. This approach

might permit theuse ofaniteration factor whichis initially much larger than can

be used when the factoris fixed throughout the process.
C. COMMENTS

Neither of the preceding adaptive techniques have been applied
to either real or synthetic data. A simplification of the steepest-descent
algorithm, similar to the technigue investigated by Bernard Widrow, ¢ has
been investigated using time-domain data. That investigation is described

%Kk
in Advanced Array Research Special Report No. 1.

%
Widrow, Bernard, 1966, Adaptive Filters 1: Fundamentals: Stanford
University Tech. Rpt. No. 6764-6, Contracts DA-01-021 AMC-90015 (Y)

and NOBsr-95038, Dec.

%ok
Texas Instruments Incorporated, 1967: Adaptive Filtering of Seismic

Array Data, Advanced Array Research Spec. Rpt. No. 1, Contract
F33657-67-C-0708-P001, 18 Sept.
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SECTION V
REQUIRED COMPUTATIONS

Pe )

A major consideration in choosing a numerical method to
solve a particular problem is the number of computations required by each

method. This section presents a summary of the computations required by

ey

each method discussed in this report. For comparison, the method of

Gaussian elimination is also included. An example is given at the conclusion

,
—_

of the discussion to illustrate the numerical efficiency of each method.

Each method is evaluated on the basis of solving the following

equation for the elements a. of the vector a.
i

\
r 7 [ AT = * . P ]
1 0 o . . . o0 3] Kin® = @ a 1

B B

L

J “:::'H:*: e

0 e a B o & o x e 0
«d L b J L n - J - - = J
' A. GAUSSIAN ELIMINATION METHOD
M By performing elementary row operations on the H matrix
o and the b vector, Equation 5-1 is changed to an equation of the form
- - r -
4
1 . A [
| i r A2 A A1 2 4
‘J o 1 423 A2n
| = (5-2)
]
. 0 A a d
-1,
| g I n nJ i nJ 1 nJ
. ' V-1 science services division




The value of a is then dn. The remaining elements of a are found by

successively solving fora ., a a To use this method, the

n-1’ "n-2" """ 717
covariance matrix H must be computed directly. This requires 2n multi-
plies and 2n adds to calculate diagonal elements and an - 2n multiplies and

2
n - n adds to calculate the off-diagonal elements.

Then the matrix is reduced to the triangular form of
N o 3
Equation 5-2 which requires Zn3 - an multiplies, 2n~ - an adds, and

2
2n divides. Solving for the filter weights using the triangular form

(Equation 5-2) requires an additional an - 2n multiplies and an - 2n adds.

For all the computations, the Gaussian elimination method,

including the covariance matrix formation, requires

° Zn3 + an - 2n multiplies
° 2n3 + n2 - n adds

2
e 2n divides

B. STEEPEST-DESCENT METHOD

{
1.

Calculating the residual vector requires 10n multiplies and
8n + 1 adds. To form the new filter weights, 2n multiplies and 2n adds
are required. If the algorithm is cycled for ITER iterations, calculations

using the steepest-descent method require
e 12n (ITER) multiplies

e (lOn + 1) (ITER) adds

V-2 science services division
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C. FINITE PROCEDURE

Assuming the imaginary part of Py is 0, each iteration of
the finite procedure uses 10n multiplies and 8n + 1 adds to compute the
residual vector. Computing the iteration constant requires 10n + 3 multi-
plies and 8n + 2 adds for the first iteration and 12n + 3 multiplies,
10n + 2 adds, and 1 divide for each succeeding iteration. To calculate
the new filter weights, 2n multiplies and 2n adds at each iteration are

required. If there are ITER iterations, the total computation requires

® (24n + 3) (ITER) - 2n multiplies
e (20n + 3) (ITER) - 2n adds

e ITER divides

D. EXACT INVERSE METHOD FOR SINGLE-CHANNEL PREDICTION

Computing the filter weights by this method requires

® 3 n multiplies
e n+ 1l adds
e 1 divide

E. COMPARISON

-

As an example, consider the design of a high-resolution f-k
spectra filter set where a first approximation of the filter weights is avail-
able. Using 20 channels of data, the required amount of computation for

each method is as follows:

e Gaussian Elimination — 16,760 multiplies,
16,380 adds, and 800 divides

e Steepest Descent (2 iterations) — 480 multiplies
and 402 adds

science services division




e Finite (1l iteration) — 443 multiplies,
363 adds, and 1l divide

e Exact Inverse — 40 multiplies, 21 adds,
and 1 divide

In this example, the exact inverse procedure is clearly the
most efficient computationally. This efficiency is due to the particular
formulation of the equations being solved, and the solution of a more
general filter-design problem migh?t show one of the other techniques to
be more effective. The selection of a technique depends on the problem

formulation and on the knowledge of the form of the solution.

V-4 sclence services division
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of the frequency-domain multichannel filter-design problem yields two

SECTION VI
CONCLUSIONS

Analysis of the methods available for the numerical solutior.

major conclusions:

® The exact inverse equation is by far the

most satisfactory method for designing
high-resolution filter sets from single
transform data (a rank-one matrix of
data).

The exact inverse equation can be used
to update the inverse of a spectral matrix
for adaptively tracking nonstationary
noise fields. Such information would be
required to do Baysian location in a cor-
related noise field (for example, at the
subarray level).
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APPENDIX A
GRADIENT METHODS

A method of iteratively solving the equation H a=b foran

unknown a can be generated by minimizing the quadratic form

*T —% T — —% T —

Q=v Hv-b "v-v 5% (A-1)

3 o n_. - e 2 :
When H is positive-definite Hermitian, the quadratic v Hv is non-

= = A=
negative, and Q takes on its minimum value - b T Hb whenv=H ~ b.

Thus, the vector ; which minimizes Q is the solution vector ;. The iter-

ative procedure makes an improved estimate Vi

starting with an initial estimate ;0 and successively computing a new estimate

of the solution vector by

= : -2
Vel Vi + P Wy for P real (A-2)

The amount Q changes from the k to the k + 1 iteration is

2 —%T = =¥*T = —* T
k k

AQ = Q -Q = p w Hw-pk we T +r ;> (A-3)

where

Minimizing Q requires that AQ be negative after each iteration. This con-

strains Py to the range

—%T — g BT =
W. r r W.
0 < Pk Z k k k k
— T H —_—
Yk Yk
A-1i science services division
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The largest change in AQ is obtained when

6" 32+ T L5
14 k k k
P, = 5 (A-4)
k 2
—% T i
Yk Yk

An optimum Py then can be computed at each iteration. Only the choice of

W remains to completely define the iterative process. It is this choice of

:Vk which distirnguishes the various iterative methods available. By choosing
:Vk to be the columns of the identity matrix taken in cyclic order, the method
becomes the Gauss-Seidel technique. This technique will not be considered

in this report.
A. STEEPEST-DESCENT METHOD

If the process is desired to move in the direction of "steepest

descent, " then AQ is minimized with respect to the elements of :vk. This

results in choosing :Vk =r = b - H;k. Substituting this choice into the

equation for Py yvields

= — (A-5)

At this point, 128 is the reciprocal of the Rayleigh quotient for the residual

vector. The Rayleigh quotient has two useful properties:

e For an arbitrary vector T, the Rayleigh quotient
always lies between the largest and the srnallest
eigenvalues of the matrix H

e For a first-order approximation to an eigenvector
of H, it yields a secon:l-order approximation to the
corresponding eigenvalue

A-2 science services division




X

=t

!b

These properties imply that only one calculation of P is necessary if the
initial choice of VO is close to the desired solution H-1 % b. This results
from the ability to express the residual vector rk as a linear combination

of the normalized eigenvectors ;L of H.
— = L = 1
T = Z a&k Yy withy y = (A-6)
1=1

The matrix H can also be expressed as the sum of its

eigenvalues and eigenvectors:

n
—_— =3
H =) My Yy Y, for \ # 1,4 0 (A-7)

This simple assumption is not necessary to the conclusion, and the result

is still valid when H is not ui this form.

Substituting Equations A-6 and A-7 into Equation A-5yields

(54757 ]

= (A-8)

[i au(* ;L*][i Ay Ve V:][i Lk ;/c]

{1=1 =1 =1

Py

Since orthogonal eigenvectors can be generated for a Hermitian matrix,

Equation A.8 reduces to

n "
~ ik Ptk
pk = i (A‘9)
A
Ltk "¢
=1 k "4k
i
1
A-3 science services division



It is apparent here that a first-order change in the aLk's will not affect the

value of P, - If the residual vector is initially small, then Py will be con-

stant throughout the process.

The numerical algorithm generated using the steepest-

descent approach is

Vier = Yk t Py T (A-10)
r, = b-Hvk (A-11)
—_ -
r
k "k '
pk I _ (A-].Z)
ko 'k

A simpler procedure results when the form of the H matrix

is

m
- =%
H= g1+ aXx X, ‘ (A-13)
1=1

The matrix operations become vector operations, and the algorithm is

Vit = Vi + Py T) (A-10)
- *
T, = b-&vk -E G'Lx{,(x{, Vk) (A-14)
1=1
; ¥ -
_ k 'k
pk = ; m (A-IS)
-— — E ]
grk T +Z a,z, 2,
i1=1
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(A-16)

]
1
x|

]

tk ~ 1 Tk

While the notation of Equations A-14, A-15, and A-16 is more
complicated than that of Equations A-11 and A- 12, the amount of computation
needed has been reduced. The reduction in computation is obtained by per-
forming the vector-dot-product operations ;:x_/k and ;: ;k first, leaving -
only scalar operations to be performed. An analysis of the amount of com-

putation required is presented in a later section of this report.
B. FINITE PROCEDURE

By using the method of conjugate gradients, it is possible to
choose Py and ;'k so that the iteration process terminates in exactly n steps.

This is accomplished by allowing ;’k to be a combination of the current re-

sidual and the previous vector ;k-l so that
wk = rk + qk-l wk_1 (A-17)
The successive constants 9y are chosen to make the quadratic form
—;:g —
wkHwk_1 =0 (A-18)
The constant P, is again chosen to minimize Q in Equation A-1 so that
;* —
r
k "k
P = = = (A-12)
Ty H Ty
A-5 sclence services division
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Substituting Equation A-17 into Equation A-18 and solving for the constant

9y yields

= - (A-19)

The particular choices of Py and Q.1 just given produce

several important effects. First, the vector product

S e By £ '*<_ Hw ) (A-20)
K+l kT Yk Trel T Y\ Tk P H Wy i
vanishes, which implies that ;k+1 and ;k are orthogonal. Second, the
vector product
RGN L (CRRIE A
Kl Tk T Tk T P Yk AWK Y1 Wked (4-21)
—_— — —_ -
= T Wt P W Hwk_1

also vanishes as a result of EquationA-21 and the choice of P - This implies

that ;k+1 and ;k are also orthogonal. It can be shown by induction that
oo Hw = 5w, 27 T 0 (A-22)
Yktl TV T Trel Y T g1 T
for 4=0,1,...,k-1

That is, every new T computed is orthogonal to all the previously computed
residual vectors. Similarly, each T is orthogonal to all the previously
computed w, vectors. It follows that r,® 0, since the n orthogonal vectors
T, through r _jspan the n-space detined by the matrix H of rank n. These

facts allow simplifying the computation of 91 to
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I I
k "k

qk-l = — = (A-23)

k-1 Tk-1

The computational cycle evolving this procedure is

w (A-10)

~
u
o
]
a5
<

(A-11)

(A-12)

(A-17)

The first cycle is computed using ;vo = ;0.

Again, consider the special case where

m
— -3
H=g1+2:mL e (A-13)
£=1
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The computational cycle becomes

Vel T Vi + Pr Wi (A-10)
i *
=P Z L ("L i (A-14)
= = T A-24
kT Tk Tk (A-24)
— —
Ze T X, T (A-16)
m
*
Bp % My (g W+ )0 % %1k z&k) - (A-25)
=1
9, = uk/uk_1 (A-26)
e T T + %Y1 W1 (A-17)

For the first iteration, Yo T T and 9 is not computed.
-1

Notation again becomes more cumbersome, but the computation
needed is much less than that required to form the autopower- crosspower
matrix and then solve for the desired filter set. Computational savings are

obtained by carrying out the same computations in a different order.
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APPENDIX B
EXACT INVERSE EQUATION

A. SOLUTION BY THE EXACT INVERSE EQUATION

The exact inverse equation is an analytic expression for the

inverse of the matrix H in the equation

Ha = B (B-1)

az=H b (B-2)

when H is nonsingular. This report studies numerical methods of solving

Equation B-1 when the H matrix is
=85S+ Z PN (B-3)
L =1

—_—
Consider a matrix of the form [A +xy ] When both A and

——
[A +x ]are nonsingular, the inverse of this matrix is

-1 =l ==% -1

—_— -1 e
A+xy] = A - 2 xy-llk_ (B-4)
I+y A " x
where
A = n xn complex matrix
x = nx 1 column vector
;* = 1 x n row vector
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This equation is verified by the following multiplication:

-l ——% -]

-1 A x A - —%
A Y 1= [A+xy ] (B-5)
<1+y A x

-1 l—=% A S A AR A
= A A+A " xy x'y - - xy l_xy
(1+y A x 1+y A x
-1 ——x% -1— - -1—
~1 ——x% A 3 )
= I+A xy - Y A 1_
1+y A x

—% .]— -1 ——x “l——% (=% 1=\ -]——%
I+Q+YA x/) A xy-A Xy -(yA x) A xvy
( i
1+y A x

When the matrix H has the form of Equation B-3, a recursive
scheme can be used to generate the inverse of H directly from the transform

points. The exact inverse procedure finds

m
—_ = -1
£S + Z %, x, X, = H (B-6)
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Equation B-6 is found by first computing

-1 —
A = £S+(1.1 X) %) (B-7)
a
1 -1 1 -1 = =% _]
= =18 = S X, x
§ E+a. % s 1% b
1 %1 *]
-1 4 - —x7°!
Ay T A ey X, x,
(0 4
- -1 -1 - —% .
A 1 = A1 - _2 1 A1 xzszl1
a
1+ x A1 x2
ad = %m- -1 — —x -]
A = Al = ol x x_ A
m m-1 —% -1 - m-1 " m"m m-1
l+aq x A x
m-1"m "“"m-1 "m
and
-1 -1
H = A (B-8)
Each iteration is completed by calculating the vector
e = Al & (B-9)
v T Bl %y -
Then the vector d has the form
d- 2 E B-10
dl, al, cL ( )
B-3 science services division
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the scalar £ which are stored in the computer memory or calculated at the

) -1
The first iteration requires a knowledge of the matrix S and

beginning of each cycle. Then, from Equation B-8,

a
-1 1 -1 1 -l— —x -1
A = — S - S x,x, 8 (B-11)
1 1 2 —% -1-— 171
& +€a,x, S x
171 -
Each succeeding iteration is
P v “t =N L=1,2
Lel - AL = cd fort=1,2,...,m-1 (B-12)
1+d£ X,

Since the xL's are arbitrary complex vectors, this algorithm could be used
either to stack a series of autopower-crosspower matrices from successive
time gates or to stack adjacent frequency points (smoothing) from the same

time gate.
B. HIGH-RESOLUTION f-k FILTER SETS

The. high- resolution technique uses an estimate of the auto-

crosspower matrix of the form

H = £EI+2z 2 (B-13)
where
I = nxnidentity matrix
z = nx ]l column vector
—_ -
Z = conjugate transpose of z

£ = real constant
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The elements of the vector z are the normalized elements of the data trans-

form vector x; i.e.,

_ —— 1/2
z, = x./(x.x ) fori=1,...,n (B-14)
i i i

Using the exact inverse equation, the inverse of the H matrix is

- — .
ml - %[ . z_z*_] (B-15)

Multiplying b by H-1 vields a filter set

—_

l_zzb
¢ ¢+;*;)

a =

—_— —
Further simplification is obtained whenz gz = N, The filter set becomes

;=?34

oy | -

= , .th
Since the b vector has one nonzero element in the J value,

Equation B-17 isg computed more simply as

(B-16)

)(ngn) z22°% (B-17)

1 1 *
TR i e 3 T B-18
2 g(g+n> % % £ & n ( )

L #j

- [1 “(zv5) z;'kzj]

The computational efficiency of this method over all the other

methods discussed is obvious., The filter sets designed by each technique

were virtually identical.
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APPENDIX C
NUMERICAL RESULTS

i —— i ot

A. STEEPEST-DESCENT METHOD

The numerical techniques discussed previously have been

applied to the special problem of designing high-resolution f-k spectra

filter sets. In this special situation, the techniques can be made more

] simple to achieve even greater numerical efficiency.
= The high-resolution technique uses an estimate of the auto-
d crosspower matrix of the form
oy -
| H=¢142z2 (C-1)
{ where
‘J .
- I = n xnidentity matrix
~ z = nx 1 column vector
—_ _
r z = conjugate transpose of z
% £ = real constant
3! The elements of the vector z are the normalived elements of the data trans-
= form vector x; i. e.,
i N s VR
z, = x, /(x X, ) fori=1,...,n (C-2)
2 i i i i
4 _
In this situation, the residual vector rk is
i
wal
r. = b [1+——*]— (C-3)
: TS -1 Zr % va -
>
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The iteration factor Py is not affected by a first-order change

in the residual vector r. . Further observations about the iteration factor

k

can be made as a result of the special form of the H matrix being considered.

It is desired to comp.te the iteration factor

T
r, r
k "k
P B = (C-4)
Hr
"k 7 Tk
The related eigenvalue problem is
Hy, = A\, y fory, y, =1 C-5
YL- LYL orYL YL- ( ')
t=12,...,n
where
)LL = eigenvalue of H
Vi ® the related eigenvector
» - -* » .
When His (I +x x ), it has only one eigenvalue Xn’
—_ —
A= E+x x (C-6)
n
and all the n-1 other eigenvalues are §.
Suppose an initial vector ;1 is chosen so that
rp=ay +e (C-7)
C=2 science services division

= S =




mrmmmﬁw o~ —— -

where ; is the eigenvector corresponding to the nonzero eigenvalue )\n and

€ isa vector representing the difference between 1-1 and cxy . Then,

x — —_ —_
[Cty + € [ayni-e]

R T T
bve + T [oy, +¢]

(C-8)

2 —k— —% —  —% — —% —
a y y +Cx[y € + ¢ y]+€ €

2 —% -— - —_
o} Y, Hy+a[y He + ¢ Hyn]+€ He

By replacmg H y with )\ y in the denominator of Equation C-8 and recog-

nizing that y y = 1 by def1n1tion, it is possible to write

2 = = —_—— —_k —
0.+Cx.(yn€+€ Y +te ¢

\

ol re(GrE 4 v)] + ene

P, = (C-9)

If the difference vector € is small compared to the eigenvector

y » then Equation C-9 can be approximated as

1
Py =5 . (C-10)
n
Since
A= E+X %
then,
P, =< — ) (C-11)
£+ X x
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When the H matrix has the form in Equation C-1,

1 1

P = o =
1 E+2 2 E+n

{C-12)

where n is the number of elements in the vector z. The value of Py is observed

in Figure C-1.

The objective then is to find an initial vector ;1 which will re-
sult in a small € component in the first residual vector. If this is found, the
iteration factor need not be computed at all but can be taken to be the value

of IKquation C-12,

High-resolution f-k spectra are generated from a filter set a

designed using an H matrix in the form of Equation C-1 and

b = [1, 0,0, ..., o] (C-13)

The unit entry in bis placed in the position corresponding to the desired
reference sensor. All other elements of the b vector are 0. The equation

set being solved is then

-
[ i 1 * ] T
( 1 0 0 rz1 [ZT s zn] a, I.1
C 1 0 . . 0
<& - 1 sl = {(C-14)
0 1 1 z a 0
_ . N L J
. )
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Figure C-1. Variation of p. from Iteration to Iteration when the
Residual Is Small (Real Data; & = 0. 001)
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Experimental results show that v. =bisa good choice for

1
the initial '"guess'' at a. Using this value for ;1, Equation C-12 to solve
Equation C-14, and the steepest-descent method, an accurate answer often
was reached in one iteration; seldom were more than three iterations re-
quir-=d. Bodewig* has mentioned that 0.9 P, sometimes produces better
convergence than P On real data, 0.9 P, is not so good a choice as Py
The convergence rates using different iteration factors can be observed in
the Figure C-2 plots for each iteration of error vs iteration constants.

When synthetic data were used, the 0.9 P, iteration factor converged faster

than P, (Figure C-3).

If a good approximation to the filter weights is not available,
very slow convergence can result. This is demonstrated in Figure C-4 for

synthetic data with an initial vector ;l value of (1 + jl) for everyv entry
where j = V-1 .

There is an indication that solving the degenerate problem
caused the rapid convergence experienced using a stezpest-descent design
procedure. An initially good ''guess'' at the filter weights is not avail-
able when the H matrix contains the sum of many vector products, implying
that, in general, relatively slow convergence can be expected in the more

complicated problems.

B. FINITE PROCEDURE

Results also have been good using the finite procedure. The
chief advantage of this method ~— that it is not necessary to start from a
first approximation to the filter weights as was necessary when using the

steepest-descent method — is shown in Figure C-5.

*®
Bodewig, E., 1956: Matrix Calculus, Interscience Publishers, Inc.,
New York.
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Using real data, convergence to essentially the exact solution
was obtained in two iterations; every value of the initial filters was 1 (Fig-
ure C-6). Of course, when the real part of the reference channel was set
to 1 and all other weights set equal to 0, much better convergence occurred
(Figure C-7). In fact, the filters were correct to four significant figures

after the first iteration.

Since the imaginary part of p, was very small during the
first few iterations (Table C-1), the program was rewritten to set the
imaginary part to 0, tnereby reducing the number of computations. The

convergence was completely unaffected.

Finally, P = 0.9 p, was used to measure the effect of varying
P - Filter weights diverged rapidly (Figure C-8); the strong susceptibility
to changes in p indicated that P necessarily must be recalculated at each
iteration, especially in view of the large and apparently unpredictable

(without recalculating) variations in Py (Table C-1).

Although the number of computations involved is almost
twice that required by the steepest-descent method, the finite procedure is
better than any direct method other than the exact inverse equation. The
rapid convergence of this method is certainly the result of the degenerate

problem being considered.
C. SPECTRA

Wavenumber spectra obtained from the iteration schemes
Presented compare quite favorably with those obtained from current high-
resolution techniques. Spectra were obtained from real data (C3 subarray,
minimum velocity 10.0 km/sec, f = 0.§5 Hz) using filter weights designed

by the exact inverse equation and by the fini.c procedure. In both cases,
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Table C-1

VARIATION OF p IN FINITE PROCEDURE (REAL DATA)

Iteration p (real part) p (imaginary part)
1 -0. 0400 0.
-10
2 -0.0400 2.50x 10
3 -0. 0400 7.54 x 1078
4 -0.0278 0.0346
5 -0.0248 0.0104

Note: Initially, the real part of the reference channel is 1 and all other

channels are 0.

Iteration P (real part) p (imaginary part)
1 -0. 0400 0.
2 -999. -2.76 x 107°
3 -0.0399 -9.63x 10710
4 -0.0417 -4.31x 10'8_
5 -0.0244 478 x10°%
6 -0.0109 -1.83x 107°

Note: Initially, both real and imaginary parts of all filter weights are 1.
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the filter weight of channel 8 has a large error because its transform was 1
punched incorrectly on the data card. However, the spectra obtzined are =

virtually identical with those obtained from current techniques. Since the

error in channel 8 did not significantly affect the spectra, wavenumber %1
Spectra are seen to be relatively insensitive to errors in the individual ko
filter weights (unless the error happens to be in the reference channel). g

Filter weights designed from the steepest-descent method

Were virtually identical to those obtained from the exact inverse equation; z
therefore, the steepest-descent method also will yield good spectra, N
D. SMOOTHING -.!
Fairly good results were obtained when data were smoothed }
over a range of frequencies. The data used were derived from the data -
for the first eight channels of the real data from the C3 LASA subarray.
The transform for a given channel was altered to give four new transforms )
with an average equal to that of the original transform. The deviation of
any given component from that of the transform from which it was derived -
was 1 to 2 percent. If these deviations were truly random, the smoothed ]
filter weights would be expected to be equal to those for the original data, -
Since the deviations were not entirely random, however, they were actually E
somewhat different. - i
With all initial filter weights set to 0 except for the real part j
of the reference channel which was set to 1, the steepest-descent method "
showed a large initial correction followed by very siow convergence. This J
method, therefore, seems to be somewhat ineffective, i
The finite procedure, on the osther harnd, produced convergence b
to a nonvarying set of filter weights after three iterations and was reasonably 5% ;
i) ]

correct (two significant figures) after two. These results occurred only when

T

the initial filter set was a first approximation to the correct set of weights.

il

==
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When a bad first approximation was made (e. 8-, letting the imaginary part
of the reference channel be set to 1), very slow convergence followed 3

large initial correction.

The necessity of a good first approximation is further illus-
trated when data from the 10-channel CPO array were smoothed over a range
of frequencies; (only nine channels were used). The data sample consisted
of noise at 1. 00 Hz for 16 October 1964, with 41 Fourier transforms taken
from f = 0.95 to 1, 05 Hz at frequency increments of 0.0025 Hz. All trans-
forms were equally weighted. Neither method could produce convergence
when the real part of the reference channel was 1.0 or 0.1. Table C-2
shows the filter weights actually obtained using other methods. It is readily
apparent that the initial choices did not approximate these filter weights
and also that no general way to make a good approximation seems apparent.
It should be noted that Very poor resolution was obtained with the filter

weights of Table C-2, indicating that the data were very poor.

to cases in which the transforms at the various frequencies under consider-
ation are approximately equal, allowing all initial filter weights to be
approximated as 0 (except the reference channel which is 1). It appears
that the finite brocedure is preferable to the steepest-descent method

when computing spectra for smoothed crosspower matrices.

C-17 science services division
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Table C-2

FILTER WEIGHTS FOR DATA SMOOTHED OVER 41 FREQUENCIES
FROM 0.95 TO 1.05 Hz

Channel
1 0
2 -0
3 0
4 -0
5 -0
6 -0
7 0
8 -0
9 0

Filter Weights

. 22481 x 10”10 -0.71687 x 10™ '
. 41205 x 1072 0. 16657 x 1071
.29080 x 10”2 0.5448 x 10”2

. 12049 x 1072 0.16102 x 10”2
. 10966 x 10” ! -0.13375 x 107>
.78141 x 10™° 0.84145 x 10°%
. 14035 x 107 0. 40036 x 10”2
. 96124 x 1072 -0.75366 x 102
.22133 x 1072 -0.96892 x 10”2
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